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Discrete Jordan Curve Theorem

Introduction

Introduction

Objective:
- Building a framework for modeling, reasoning and
programming with surface subdivisions (polyhedral
surfaces, or polyhedra)
Means:
- Formal specifications in the Calculus of Inductive
Constructions
- Interactive proofs in the Coq proof assistant (INRIA)
- A combinatorial hypermap model of polyhedra
"Benchmark" of real size:
- Discrete Jordan Curve Theorem (JCT)
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Related work

Related work

Statement of the Jordan Curve Theorem (JCT) [C. Jordan,
1887]
First correct proof of the JCT [O. Veblen, 1905]
Comb. maps and hypermaps [W.T. Tutte, R. Cori..., 1970-]
Discrete JCT with combinatorial maps [W.T. Tutte, 1979]
Planar graphs and triangulations formalized in Isabelle [G.
Bauer, T. Nipkow, 2003]
Formalized proof of the classical JCT in the MIZAR project
[A. Kornilowicz, 2005]
Formalized proof of the JCT for rectangular grids in the
Flyspeck project [T. Hales, 2005]
Specification of hypermaps and proof in Coq of the Four
Colour Theorem [G. Gonthier et al., 2005]
Other hypermap specification and proof in Coq of Genus
Theorem and Euler Formula [J.-F. Dufourd, 2006]
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Mathematical aspects

Mathematical aspects

Definition (hypermap)

A hypermap is an algebraic structure M = (D, α0, α1), where D
is a finite set, the elements of which are called darts, and α0, α1
are permutations on D.

Definition (Topological cells)

The topological cells of a dart x in a hypermap are dart sets
which are traversed while iterating some operations from x :
- edge of x : iteration of α0
- vertex of x : iteration of α1
- face of x : iteration of φ = α−1

1 ◦ α
−1
0

- connected component of x : iteration of both α0 and α1.



Discrete Jordan Curve Theorem

Mathematical aspects

(Projection, embedding)

In a projection of a hypermap onto a surface: vertices and
edges are projected onto points, darts onto open Jordan
curves, faces onto open connected regions.
An embedding is a projection without self-intersection
which determines a subdivision of the surface.

Example: A hypermap projected onto a plane (with a
self-intersection)

10

11

12

14

13

7

6

85 9

3

2

1

4 15

1 2 153 4 5 7 9 10 11 12 13 14

α1 2

14

8 6

3

D

α0   4 5 3 112 910 12 15 13

111

6

13 15 1461098 74 5 12

1 7 8 

15 darts, 7 edges (strokes), 6 vertices (bullets), 6 faces, and 3
connected components.
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Mathematical aspects

Let M be a hypermap, and d ,e, v , f , c be its numbers of darts,
edges, vertices, faces, connected components, respectively.

Definition (Euler characteristic, genus, planarity, Euler
formula)

(i) The Euler characteristic of M is χ = v + e + f − d .
(ii) The genus of M is g = c − χ/2.
(iii) When g = 0, the hypermap is said to be planar.
(iv) A planar hypermap satisfies the Euler formula:

χ = v + e + f − d = 2 ∗ c

.

Example

For the example hypermap, χ = 6 + 6 + 7− 15 = 4 and
g = 3− χ/2 = 1. Thus, the hypermap is non planar.
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Mathematical aspects

Theorem of the genus

(i) χ is an even integer.
(ii) g is a non-negative integer.

Interpretation of the genus

The genus corresponds with the minimal number of holes in an
orientable closed surface the hypermap can be embedded onto
(without self-intersection).

Example

The example hypermap with genus 1 cannot be embedded
onto a plane. But it can be embedded onto a torus with 1 hole.
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Mathematical aspects

Definition (Double-link and adjacencies)

(1) A double-link is a pair of darts (x , x ′) where x and x ′ are
distinct and belong to the same edge.
(2) The faces F and F ′ of M are said to be adjacent by the
double-link (x , x ′) when y = α0(x) is a dart of F and
y ′ = α0(x ′) a dart of F ′.
(3) The double-links (x , x ′) and (z, z ′) are said to be adjacent
by the face F when α0(x ′) and α0(z) are in F .

Example: Double-link and adjacencies

 Double−link (x, x’).

    F and F’ are adjacent by (x, x’).

F F’

y

x
y’

x’

The double−links (x, x’) and (z, z’) are

adjacent by the face F.

y

x
y’

x’ z’

t’

t 

z

F
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Mathematical aspects

Definition (Ring of faces in a hypermap)

A ring of faces R of length n in M is a non-empty sequence of
double-links (xi , x ′i ), for i = 1, . . . ,n, with the following
properties, where Ei is the edge of xi and Fi the face of
yi = α0(xi):
(0) Unicity: Ei and Ej are distinct, for i , j = 1, . . . ,n and i 6= j ;
(1) Continuity: Fi and Fi+1 are adjacent by the double-link
(xi , x ′i ), for i = 1, . . . ,n − 1;
(2) Circularity, or closure: Fn and F1 are adjacent by the
double-link (xn, x ′n);
(3) Simplicity: Fi and Fj are distinct, for i , j = 1, . . . ,n and i 6= j .

Example: A ring R of length n = 4 in hypermap M
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Mathematical aspects

Definition (Break of a hypermap along a ring)

Let R be a ring (xi , x ′i )1≤i≤n of faces in M, with yi = α0(xi), and
Mi = (D, α0,i , α1)0≤i≤n be the hypermap sequence, where the
α0,i are recursively defined by:
(1) i = 0: α0,0 = α0;
(2) 1 ≤ i ≤ n: for each z ∈ D,
α0,i(z) = if z = xi then y ′i else if z = x ′i then yi else α0,i−1(z).
Then, Mn = (D, α0,n, α1) is said to be obtained from M by a
break along R.
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Mathematical aspects

Example: Break of M along the ring R giving M ′
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Mathematical aspects

Discrete Jordan Curve Theorem

Let M be a planar hypermap with c components, R be a ring of
faces in M, and M ′ be the break of M along R. The number c′

of components of M ′ is such that c′ = c + 1.
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Hypermap specifications in Coq

Inductive definition of a type dim of dimensions

Inductive dim:Set:= zero: dim | one: dim.

Definition of a type dart of darts as a renaming of nat

Definition dart:= nat.
Definition nil:= 0.
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Hypermap specifications in Coq

Inductive definition of a type fmap of free maps (free
algebra of terms)

Inductive fmap:Set:=
V : fmap

| I : fmap->dart->fmap
| L : fmap->dim->dart->dart->fmap.

Example: Description of the previous hypermap. Links are
represented by arcs of circle. The orbits are (intentionally)
incompletely linked
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Hypermap specifications in Coq

Observers of free maps

Existence (exd m z) of a dart z in a free map m:
Fixpoint exd(m:fmap)(z:dart){struct m}:Prop
:= match m with

V => False
| I m0 x _ => z=x \/ exd m0 z
| L m0 _ _ _ => exd m0 z
end.

Partial operation αk : (A m k z) returns the successor of
z in m at the dimension k if it exists, otherwise nil.
Existence (succ m k z) of a successor of z for A:
Definition succ(m:fmap)(k:dim)(z:dart):=
A m k z <> nil.
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Hypermap specifications in Coq

Observers of free maps (continued)

Extremities of orbits: (bottom m k z) and (top m k
z) give the extremities of the (open) k-orbit of z
Complete operation αk , named cA: realizes the closures of
the k-orbits
Face traversal: partial successor F, complete successor cF

Destructors in a free map

Deletion D of a dart z in m: (D m z)
Break B in m of a link starting from z at dimension k
(deletion of an arc of circle): (B m k z)

Inverses or symmetrical operations

A_1, pred, cA_1, B_1, F_1, cF_1...
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Hypermap specifications in Coq

Hypermaps as a subtype of the free maps

Precondition on I: (prec_I m x) expresses that x is
different from nil and does not exist in m.
Precondition on L: (prec_L m k x y) expresses that x
and y both exist in m, x has no k-successor, y has no
k-predecessor, and that their k-orbit will stay open.
Invariant of the hypermaps (with open edges and vertices):
Fixpoint inv_hmap(m:fmap):Prop:=
match m with

V => True
| I m0 x => inv_hmap m0 /\ prec_I m0 x
| L m0 k0 x y =>

inv_hmap m0 /\ prec_L m0 k0 x y
end.

Properties: for any m and k, cA is a permutation and cA_1
is its inverse.
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Hypermap specifications in Coq

Orbits for permutations

They are genericly defined by Coq signatures and modules
for any inverse bijections f and f_1 in a hypermap.
A specialization is done for (cA m zero), (cA m one),
(cF m) and their inverses.
The existence of a path in an orbit from dart x to dart y is
easy to define, e.g. in a face: expf m x y

Connectivity

The membership of x and y to the same connected
component is expressed by: eqc m x y

Proven properties

Each orbit is periodic with a uniform lowest period.
(expf m) and (eqc m) are decidable equivalences.
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Hypermap specifications in Coq

Numbers of darts, edges, vertices, faces, components

Fixpoint nd(m:fmap):Z:=
match m with

V => 0
| I m0 x _ => nd m0 + 1
| L m0 _ _ _ => nd m0
end.

Fixpoint ne(m:fmap):Z:=
match m with

V => 0
| I m0 x _ => ne m0 + 1
| L m0 zero x y => ne m0 -
if eq_dart_dec (cA m0 zero x) y then 0 else 1

| L m0 one x y => ne m0
end.

(* Idem for nv, nf, nc *)
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Hypermap specifications in Coq

Euler characteristic, genus, planarity

Definition ec(m:fmap): Z:=
nv m + ne m + nf m - nd m.

Definition genus(m:fmap): Z:=
(nc m) - (ec m)/2.

Definition planar(m:fmap): Prop:=
genus m = 0.

Genus Theorem and Euler Formula

Theorem Genus_Theorem: forall m:fmap,
inv_hmap m -> genus m >= 0.

Proof. (* by induction on m *).

Lemma Euler_Formula: forall m:fmap,
inv_hmap m -> (planar m <-> ec m / 2 = nc m).

Proof. (* trivial *).
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Planarity and connectivity criteria
Constructive criterion of planarity

Theorem planarity_crit_0:
forall(m:fmap)(x y:dart),
inv_hmap m -> prec_L m zero x y ->

(planar (L m zero x y) <->
(planar m /\

(~eqc m x y \/ expf m (cA_1 m one x) y))).

Example: Linking x and y at dimension 0 when connected
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a. Planar 0−linking inside a face F giving 2 faces F’ and F’’.

b. Non−planar 0−linking between 2 faces F and F’ giving face F’’.

x0

x0
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Planarity and connectivity criteria

Destructive criterion of planarity

Theorem planarity_crit_B0:
forall(m:fmap)(x:dart),
inv_hmap m -> succ m zero x ->
let m0 := B m zero x in
let y := A m zero x in

(planar m <->
(planar m0 /\
(~eqc m0 x y \/ expf m0 (cA_1 m0 one x) y))).

Destructive criterion of connectivity

Theorem disconnect_planar_criterion_B0:
forall (m:fmap)(x:dart),
inv_hmap m -> planar m -> succ m zero x ->
let y := A m zero x in
let x0 := bottom m zero x in

(expf m y x0 <-> ~eqc (B m zero x) x y).
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Rings of faces

Modeling a ring

Each ring of faces is viewed as a list of darts of type:

Inductive list:Set :=
lam: list

| cons: dart -> dart -> list -> list.

The double-links satisfy:

Definition double_link(m:fmap)(x x’:dart)
:Prop:= x <> x’ /\ expe m x x’.

where expe m x x’ expresses that x and x’ are in the same
edge.
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Rings of faces

Rings of faces (continued)

Modeling a ring (continued)

Thus, the fact that l is really a list of double-links is easily
expressed by:

Fixpoint double_link_list(m:fmap)
(l:list){struct l}:Prop:=
match l with

lam => True
| cons x x’ l0 => double_link m x x’ /\

double_link_list m l0
end.

Finally, a ring satisfies:

Definition ring(m:fmap)(l:list):Prop:=
~emptyl l /\ double_link_list m l /\

pre_ring0 m l /\ pre_ring1 m l /\
pre_ring2 m l /\ pre_ring3 m l.
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Rings of faces

Ring Condition (0): unicity

All the darts of a ring are distincts:

Fixpoint pre_ring0(m:fmap)(l:list)
{struct l}:Prop:=
match l with

lam => True
| cons x _ l0 => pre_ring0 m l0 /\

distinct_edge_list m x l0
end.
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Rings of faces

Adjacency by a face

Adjacency by a face of m for two double-links (x,x’) and
(xs,xs’):

Definition face_adjacent(m:fmap)
(x x’ xs xs’:dart): Prop:=

let y’:= cA m zero x’ in
let ys:= cA m zero xs in

expf m y’ ys.
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Rings of faces

Ring Condition (1): continuity

Two successive faces in l are adjacent:

Fixpoint pre_ring1(m:fmap)(l:list)
{struct l}:Prop:=

match l with
lam => True

| cons x x’ l0 =>
match l0 with

lam => True
| cons xs xs’ l’ =>

pre_ring1 m l0 /\
face_adjacent m x x’ xs xs’

end
end.
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Rings of faces

Ring Condition (2): circularity or closure

The last and first double-links in l are adjacent by a face:

Definition pre_ring2(m:fmap)(l:list):Prop:=
match l with

lam => True
| cons x x’ l0 =>

match (last l) with (xs,xs’) =>
face_adjacent m xs xs’ x x’

end
end.
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Rings of faces

Ring Condition (3): simplicity

All faces of l are distinct:

Fixpoint pre_ring3(m:fmap)(l:list)
{struct l}:Prop:=

match l with
lam => True

| cons x x’ l0 =>
pre_ring3 m l0 /\
distinct_face_list m x x’ l0

end.
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Discrete Jordan Curve Theorem

Breaking an edge at a double-link

Example: breaking an edge at a double-link

 

Case 2: succ m zero x /\  ~ succ m zero x’

Case 3:   ~ succ m zero x /\ succ m zero x’

Case 1: succ m zero x /\ succ m zero x’
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Discrete Jordan Curve Theorem

Breaking a hmap along a ring

Breaking an edge at a doublel ink

Definition Br1(m:fmap)(x x’:dart):fmap:=
if succ_dec m zero x
then if succ_dec m zero x’

then B (L (B m zero x)
zero (top m zero x)
(bottom m zero x)) zero x’

else B m zero x
else B m zero x’.

Breaking a hypermap along a ring

Fixpoint Br(m:fmap)(l:list){struct l}:fmap:=
match l with

lam => m
| cons x x’ l0 => Br (Br1 m x x’) l0

end.
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Discrete Jordan Curve Theorem

First case: ring of length n = 1

Lemma Jordan1:forall(m:fmap)(x x’:dart),
inv_hmap m -> planar m ->
let l:= cons x x’ lam in
ring m l -> nc (Br m l) = nc m + 1.

Proof. (* with the destructive planarity and
connectivity lemmas *)

Example: break along a ring of length 1
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Discrete Jordan Curve Theorem

General case: ring of length n > 1

Lemma 1: when n >= 2, a link break preserves the
connectivity

Lemma ring1_ring3_connect:
forall(m:fmap)(x x’ xs xs’:dart)(l:list),

let l1:= cons x x’ (cons xs xs’ l) in
let y := cA m zero x in
let y’ := cA m zero x’ in

inv_hmap m -> planar m ->
double_link_list m l1 ->

pre_ring1 m l1 -> pre_ring3 m l1 ->
~ expf m y y’.

Proof. (* by induction on l *).
Lemma 2: when it entails no disconnection, a link break
preserves the ring property

Lemma ring_Br1: forall(m:fmap)(l:list),
inv_hmap m -> planar m ->
let x:= fst (first l) in
let x’ := snd (first l) in
let m1 := Br1 m x x’ in

ring m l ->
(emptyl (tail l) \/ ring m1 (tail l)).
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Discrete Jordan Curve Theorem

Example: break along a ring of length > 1
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Finally, the Jordan Curve Theorem

Theorem Jordan: forall(l:list)(m:fmap),
inv_hmap m -> planar m ->

ring m l ->
nc (Bl m l) = nc m + 1.

Proof. (* by induction on l
with the previous lemmas *).
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Validity of the theorem, case of the oriented maps

Our ring specification and our Jordan Curve Theorem
formalization are complete with respect to our
mathematical definitions.
The best way to see the effective application of this work is
to consider combinatorial oriented maps (where α0 is an
involution).

Example: Jordan Curve in a pixel grid

a. A grid map and a ring of faces b. Grid map in two components after the break along the ring
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Validity of the theorem, case of the oriented maps

Symmetrically: breaking vertices

Example: Application of the Jordan Curve theorem in a
pixel grid in order to break vertices

a. Grid map and symmetric ring of faces b. Grid map in two components after the break along the ring
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Validity of the theorem, case of the oriented maps

Duality: dual representations of maps.

Example: Conventional and primal-dual representations

b. Primal (light) and dual (dark) representations  of a mapa. A primal representation of a map
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Validity of the theorem, case of the oriented maps

Application of the JCT.

Example: Application of the discrete Jordan curve theorem
in a dual representation

φ
α1

α0

(a) Dual representation of a map and ring (b)  Dual map in two components after the break along the ring
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Validity of the theorem, case of the oriented maps

Application in a dual grid.

Example: Application of the Jordan Curve Theorem in a
dual grid

b. Grid map with two components after the break along the ringa. A connected grid map in dual representation and a ring
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Conclusions

We have:
a framework of hypermap specifications from scratch of
about 17,000 Coq lines to:
- reason with the topology of surface subdivisions
- guide implementation and real size programming
a statement and a constructive proof of a version of the
Discrete Jordan Curve Theorem, completely formalized
and verified: 5,000 Coq lines, 25 definitions and 50
lemmas.
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Future work

We want to study:
in combinatorial topology: other models (like map strings,
simplicial complexes, cellular complexes) in n-D
in geometric modeling, computational geometry: several
embeddings, round-off numerical problems, and how to
bypass them
in topological-geometrical program construction: the
extraction of certified programs from constructive proofs
thanks to the Curry-Howard isomorphism.
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